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Evolution of Eukaryotic rRNA: Constraints
Imposed by RNA Interactions

S.A. Gerer,* C. JeppESEN,* B. SteBBINs-Boaz,* AND M. ARrEs, JR."

*Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912; 'Department of Molecular
Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510

In this chapter we will discuss the effects of alter-
ations within the ribosomal DNA (rDNA) genes. RNA
interactions that are important for regions within
rRNA impose selective constraints upon propagation
of mutations within the gene. As a consequence, there
are functionally important regions in rRNA that are
highly conserved in primary sequence, even between
different kingdoms. rRNA also has an evolutionarily
conserved core secondary structure. Finally, in this
chapter we will examine U3 small nuclear RNA
(snRNA), and discuss whether its structure can support
models of its putative interaction with the rRNA pre-
Cursor,

Structure of Xenopus rDNA Transcription Unit

The rDNA of Xenopus laevis, the South African
clawed toad, was the first eukaryotic gene to be cloned
(Morrow et al. 1974), and we have used this model
system to study its evolution. Figure 1 depicts a typical
repeat unit of X. laevis TDNA; there are about 450
tandem copies of this IDNA repeat in the nucleolus
organizer region (Brown and Weber 1968a,b). The
stretch coding for the 40S RNA precursor alternates
with the so-called nontranscribed spacer (NTS). Re-
cent evidence suggests that the NTS is, in fact, also
transcribed as part of a larger precursor that must be
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rapidly processed (DeWinter and Moss 1986; Labhart
and Reeder 1986, 1987). Further processing events
remove RNA from the external transcribed spacer
(ETS) and internal transcribed spacers (ITS) to yield
the mature molecules of 5.8S, 18S, and 285 rRNA.. The
sequence for the 11,580 nucleotides of X. laevis TDNA
has been determined (Table 1).

Selection Superimposed on Molecular Drive

Mutations occur at essentially random positions with-
in the rDNA, but the evolutionary consequences of
each mutation depends on its position, For example,
when the rDNA of X. borealis (Brown et al. 1977) was
compared to X. laevis TDNA, it was found that the
spacers differed greatly, whereas the rDNA coding
regions were extremely similar (Brown et al. 1972;
Furlong and Maden 1983; Furlong et al. 1983). Within
any given individual, all repeated rDNA copies are
virtually identical with one another. The coupling of
intraspecific homogeneity with interspecific hetero-
geneity for sequences of a tandemly repeated gene
family is called horizontal, coincidental, or concerted
evolution (Brown et al. 1972; Brown and Sugimoto
1974). The constant turnover in rDNA sequence can be
gradually corrected by “molecular drive,” which in-
cludes the processes of unequal crossing-over, gene
conversion, and transposition (Dover 1982; Dover and
Flavell 1984). Molecular drive can spread variants
through the multiple copies of rDNA, and could fix
these changes within all individuals of a species under
certain circumstances (discussed by Walsh 1985).
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Figure 1. Structure of a typical repeat unit of ‘DNA from X. laevis, which has been sequenced in its entirety (see Table 1). 1 . '
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Table 1. Sequence of Xenopus laevis rDNA

Length
Region (nucleotides) Reference
ETS 712 Maden et al. (1982)
188 1825 Salim and Maden (1981)
ITS 1 557 Hall and Maden (1980)
5.85 162 Hall and Maden (1980)
ITS 2 262 Hall and Maden (1980)
285 4110 Ware et al. (1983)
NTS 3952 Sollner-Webb and Reeder (1979); Moss et al.
(1980); Labhart and Reeder (1986 and pers. comm.)
Total: 11,580

If molecular drive were the only force acting on

rDNA to homogenize the multiple copies after random

changes, then the variation between species should be
uniform throughout the whole rDNA gene. In fact, this
is not the case. Not only do spacers vary more than the
rRNA coding regions, but even within the coding re-
gions some sequences are more highly conserved than
others. This suggests that selection pressures are
superimposed on the products of molecular drive.
Negative selection will drive downward the number of
rDNA copies with a deleterious alteration, and positive
selection will result in the spread of useful changes. In
rDNA, much selection is influenced by RNA interac-
tions necessary for ribosome biogenesis and ribosome
function. Examples of such RNA interactions will be
reviewed in the following sections.

CONSERVED PRIMARY SEQUENCE
WITHIN rRNA

Heterologous hybridization experiments have dem-
onstrated that portions of rRNA sequence have been
highly conserved between different eukaryotic species
(Sinclair and Brown 1971; Birnstiel and Grunstein
1972; Gerbi 1976). Southern blot hybridization showed
that the evolutionarily conserved regions are scattered
throughout 18S and 28S rRNA at distinct locations
(Cox and Thompson 1980; Gourse and Gerbi 1980a).
With the accumulation of rDNA sequences for many
different species (see Tables II and III in Gerbi 198S;
Gutell et al. 1985; Huysmans and DeWachter 1986), it
has became possible to align sequences to determine
regions of conservation at the nucleotide level (for
early examples, see Olsen et al. 1983 for 16S-18S
rRNA and Ware et al. 1983 for 235-28S rRNA align-
ments). When used judiciously, rRNA sequence com-
parisons between different taxa can provide a powerful
molecular approach for phylogenetics (Lane et al.
1985; Pace et al. 1986; Rothschild et al. 1986).

Certain regions within rRNA are conserved even
between kingdoms. Selection must be very strong at
these areas to prevent changes from being perpetuated.
We will now describe the functions attributed to some
of these highly conserved areas in rRNA.

Intermolecular Interactions: RNA-protein

rRNA interacts with proteins in ribosome biogenesis
and also for ribosome function. Initially it was thought
that perhaps the main function of rRNA was to act as a
scaffold on which the early binding ribosomal proteins
were laid during nbosome biogenesis. Although this is
certainly one function for rRNA, we know now that
rRNA has several other roles as well for ribosome
function during protein synthesis.

L1 ribosomal protein provides a good example of the
scaffold function for rRNA. We found that Escherichia
coli ribosomal protein L1 can bind to Dictyostelium
discoideum 26S rRNA (Gourse et al. 1981). The L1
protected regions in E. coli 23S, D. discoideum 268,
and the counterpart region in X. laevis 285 rRNA all
share similarities in secondary structure and also share
two stretches of conserved primary sequence (Gourse
et al. 1981). These similarities also extend to other
bacteria (Branlant et al. 1981; P. Cahill et al., pers.
comm.). Presumably these are features that must be
maintained in the rRNA in order for it to be able to
bind ribosomal protein L1. The L11-L1 polycistronic
mRNA of E. coli lacks the majority of the two con-
served stretches found in rRNA but retains some of the
same secondary structure features (Gourse et al. 1981;
Baughman and Nomura 1983, 1984), and this may
explain why L1 protein binds to its own message less
well than to rRNA for L1 autoregulation.

Another area containing evolutionarily conserved se-
quence is the GTPase center located one third of the
way in from the 5° end of 23S rRNA. This region
associates with the protein EF-G, as demonstrated by
cross-linking (Skold 1983). The antibiotic thiostrepton
blocks the interaction of EF-G with the ribosome,
thereby stopping EF-G-dependent GTPase activity and
inhibiting translocation (Thompson et al. 1982). The
bacterium that makes thiostrepton is Streptomyces
azureus; it may be resistant itself to thiostrepton be-
cause it methylates an A residue in the putative
GTPase center (Thompson et al. 1982). Xenopus and
other eukaryotes have a G instead of an A at this
position, but site-directed mutagenesis shows that this
cannot be the sole explanation for the decreased sen-
sitivity of eukaryotes to thiostrepton (J. Thompson et
al., pers. comm.).
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A third example of an evolutionarily conserved re-
gion that is possibly important for rRNA-protein inter-
actions is the peptidyltransferase center, located one
quarter of the way inward from the 3' end of 235-28S
rRNA. Peptidyl-tRNA and aminoacyl-tRNA must be
positioned appropriately in the ribosome so that trans-
peptidation can occur. Note that a protein with pep-
tidyltransferase activity has not yet been purified, and it
is conceivable that this activity is not protein based.
The peptidyltransferase center includes the sites of base
mutation rendering mitochondrial ribosomes resistant
to erythromycin (Sor and Fukuhara 1982, 1984) and
chloramphenicol (Dujon 1980; Blanc et al. 1981a,b:
Kearsay and Craig 1981; Slott et al. 1983); the same is
true for eubacterial ribosomes (Skinner et al. 1983:
Sigmund et al. 1984; Ettayebi et al. 1985). Also in
archaebacterial ribosomes the sites of anisomycin re-
sistance help to define the peptidyltransferase center
(Hummel and Bock 1987). These studies suggest that
this area of rRNA has been conserved to maintain a
conformational pocket that holds the 3’ ends of the
aminoacyl- and peptidyl-tRNAs in appropriate orienta-
tion to allow transpeptidation to occur. Cross-linking
experiments demonstrate directly that tRNA is as-
sociated with this region of rRNA (Barta et al. 1984;
Hall et al. 1985).

Intermolecular Interactions: RNA-RNA

Some conserved regions within rRNA interact with
other RNA molecules during translation. The first ex-
ample of such an RNA-RNA interaction was the find-
ing of Shine and Dalgarno (1974) that the sequence
CUCC adjacent to the 3’ end of prokaryotic 16S rRNA
has a complementary region upstream of the AUG
initiation codon in mRNA. The reality of this mRNA-
rRNA interaction has been supported by several
studies (Steitz and Jakes 1975; reviewed in Kozak 1983:
Hui and deBoer 1987; Jacob et al. 1987). Although the
Shine-Dalgarno sequence is found in the 16S rRNAs of
eubacteria, archaebacteria, and chloroplasts, it is miss-
ing in mitochondria and in the cytoplasmic ribosomes
of eukaryotes (Hagenbiichle et al. 1978). Even though
the Shine-Dalgarno sequence is not present in
eukaryotes, psoralen cross-linking has implicated as-
sociation of mRNA with the 3’ end of 185 rRNA
(Nakashima et al. 1980). An additional 185 mRNA-
rRNA interaction has been hypothesized by Thompson
and Hearst (1983), whereby the hypermodified base
amy found one third of the way in from the 3’ end of
185 rRNA may be base-paired with the 3’ end of 18S
rRNA, allowing it to interact specifically with the m’G
cap found at the 5’ end of eukaryotic mRNAs,

During translation, tRNAs also come into close as-
sociation with rRNA. A conserved 17-mer is found
slightly inward from the 3’ end of 165-18S rRNA in all
known cases. This 17-mer includes C,,,, in E. coli 16S
rRNA and the equivalent in other species, which have
been cross-linked to tRNA (Ofengand et al. 1982;
Prince et al. 1982; Ehresmann and Ofengand 1984;

Gornicki et al. 1984, Ciesiolka et al. 1985). Mutation to
paromomycin resistance maps to this region of rRNA,
supporting the view that it is part of the decoding site
(Li et al. 1982; Spangler and Blackburn 1985), as do
site-directed mutagenesis studies (Krzyzosiak et al.
1987). It should be noted that no base pairing seems to
be involved for the association of tRNA to the con-
served 17-mer area of 165-18S rRNA. Furthermore,
DNA hybridization electron microscopy has shown that
this region of 165-18S rRNA that interacts with tRNA
is exposed in the cleft of the small ribosomal subunit
(Keren-Zur et al. 1979; Oakes et al. 1986). tRNA
spans the interface between the two ribosomal sub-
units, and also associates with the peptidyltransferase
center in 235-28S rRNA as described in the preceding
section (Barta et al. 1984; Hall et al. 1985).

Intramolecular Interactions; RNA Switches

It is conceivable that a stretch of sequence within
rRNA might have more than one possible pairing part-
ner within rRNA. At different stages of translation,
one stem might open up and a new stem might be
formed with an alternate stretch of complementary
sequence. It has been speculated that such an RNA
switch mechanism may be central to the process of
translation (reviewed by Brimacombe et al. 1983); a
chain of RNA switches that could cycle the conforma-
tion of the ribosome back to its ground state has been
formulated for E. coli 16S rRNA (Thompson and
Hearst 1983). RNA pairing interactions important for
switching could be intramolecular (between two
stretches of the same molecule) or intermolecular (e.g.,
between rRNA and a small RNA pairing partner such
as 5S RNA, tRNA, or 5.8§ RNA). In either case, when
more than one pairing partner is involved, mutation at
one position would favor compensatory mutations at
the complementary nucleotides of both of its alternate
pairing partners. Since such simultaneous multiple
compensatory mutations are unlikely to occur, there
would be negative selection against mutation of just
one of the three interacting partners. The net effect
would be evolutionary conservation of sequences uti-
lized for RNA switches. It remains to be seen if data
support the hypothesis of RNA switches. Instead of
breaking and remaking stems, an alternate model is
that changes in coaxial alignments of helices might
drive functionally important changes in tertiary con-
formation of rRNA.

NONCONSERVED PRIMARY SEQUENCE
WITHIN rRNA

Co-evolution to Retain a Core Secondary
Structure of rRNA
As discussed above, functional constraints may pre-
serve certain sequences within rDNA, since alteration
of these sequences would be deleterious for rRNA
function. Other regions within rRNA do not seem to
have the same requirement for preservation of the
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actual nucleotide sequence, but may still be subject to
other structural constraints.

Co-evolution can occur when RNA-RNA interac-
tions are at stake. For instance, if it is important to
retain a base-paired stem as part of the rRNA sec-
ondary structure, then mutation of a base on just one
side of the stem would be selected against; only when a
compensatory mutation occurs for its complementary
base-pairing partner would selection permit fixation of
the mutations. There is an increasing body of ex-
perimental data on the secondary structure of rRNAs;
compensatory base changes are taken as additional
evolutionary support for the existence of specific stems
in rRNA. Covariation may also be found to maintain
the tertiary structure of rRNA (Gutell et al. 1986).

Interruptions within the Core Secondary
Structure of rRNA

Compensatory base changes suggest that the ex-
perimentally derived secondary structures for E. coli
16S and 23S rRNAs also are conserved as core struc-
tures in ribosomes from all bacteria, plants, animals,
and organelles (summarized in Tables IV and V of
Gerbi 1985 see also Brimacombe et al. 1983; Woese et
al. 1983; Noller 1984). Can mutations occur that do not
disrupt the core secondary structure of rRNA? Introns
are one such example. These intervening sequences
interrupt highly conserved sequences of some rDNAs
(summarized in Gerbi et al. 1982), the most striking of
which are the 87 bases in a row with no mismatch that
are conserved beween Xenopus 28S rDNA (which lacks
an intron) and the region surrounding the intron of
Tetrahymena rDNA (Gourse and Gerbi 1980b). This
conserved region doubtless represents an area of im-
portant function for rRNA, and disruption of this re-
gion would be harmful. Tetrahymena copes with such
interruptions by removing introns via self-splicing so
that the mature rRNA is no longer interrupted (Kruger
et al. 1982). In other cases (such as Drosophila), where
there are both intron-plus and intron-minus copies of
rDNA in the genome, only the intron-minus copies of
rDNA seem to be transcribed (reviewed by Becking-
ham 1982). Introns have not yet been found in the
rDNA of vertebrates.

Eukaryotes carry additional sequences (“‘expansion
segments’; Clark et al. 1984) that are not present in the
core structure of E. coli rRNA, and are not usually
removed by RNA processing. The location of expan-
sion segments within regions of rRNA of little primary
sequence conservation supports the idea that they can
be tolerated in the mature rRNA molecules because
they do not disrupt a region of functional importance.
Since the length and sequence of expansion segments is
quite variable between species (though some secondary
structure features are preserved within but not between
kingdoms; Michot and Bachellerie 1987), it seems
plausible that they may not have any role in the ribo-
some. Indeed, it appears that if an expansion segment
is too large and might create a steric hindrance to the

ribosome, it can be removed during rRNA maturation.
One example of such RNA processing is the excision of
the 3’'-most expansion segment in higher plant chloro-
plast 23S rRNA. Unlike intron removal, subsequent
splicing does not occur, so a separate 4.55 RNA mole-
cule results that corresponds to the 3’ end of E. coli 238
rRNA (Edwards et al. 1981; Machatt et al. 1981; Mac-
kay 1981; Clark and Gerbi 1982).

A second example of removal of an expansion seg-
ment is found during rRNA processing in insects and
many lower eukaryotes, thereby subdividing 285 rRNA
into 28S a and 28S B halves (Delanversin and Jacq
1983; Ware et al. 1985; Fujiwara and Ishikawa 1986).
In yeast 26S rRNA the counterpart expansion segment
is not removed; it is smaller and apparently does not
interfere with binding of yeast ribosomal protein L25 to
this area (El-Baradi et al. 1985). Interestingly, yeast
ribosomal protein L25 binds even tighter to the
homologous region of E. coli 23S rRNA, which lacks
an expansion segment altogether (El-Baradi et al.
1985).

In contrast to the expanded structure of eukaryotic
rRNA, the rRNA of mammalian mitochondria appears
to be decreased in size relative to E. coli rRNA, due to
several “amputations” of blocks of sequence. Some-
times these amputations coincide with positions at
which eukaryotic expansion segments are found insert-
ed into the core structure (e.g., Mankin and Kopylov
1981).

DOES U3 snRNA INTERACT WITH
rRNA PRECURSOR?

As described above, some regions within rRNA are
highly conserved in primary sequence because they
represent areas of functional importance for RNA-
protein or RNA-RNA interactions. Other regions with-
in rRNA are not conserved in primary sequence, but
co-evolve by compensatory base changes to retain base-
paired stems necessary for the conserved core sec-
ondary structure of rRNA. Let us now see whether
these rules of RNA evolution can give information
about another case of intermolecular RNA-RNA inter-
action, namely the postulated association of U3 snRNA
with rRNA precursor.

Previous Work on U3 snRNA

snRNAs are present in eukaryotic nuclei and have
been highly conserved in size and sequence throughout
evolution. These RNAs are U-nch, and so were ini-
tially named U1-U6 snRNA; they exist associated with
proteins in ribonucleoprotein particles (snRNPs).
snRNAs are transcribed by RNA polymerase 11 (Gram
Jensen et al. 1979; Reddy and Busch 1981), and lack a
poly(A) tail at their 3' end. A unique trimethyl-
guanosine cap occurs at the 5’ end of all snRNAs
except U6 (Reddy et al. 1972; Reddy and Busch 1981).

Several different snRNA molecules are utilized dur-
ing mRNA splicing. The function of U3 snRNA is less
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clear. U3 snRNA is localized in the nucleolus, where it
has been shown to be associated with nucleolar RNA
sedimenting at 285-32S (Prestayko et al. 1970; Zieve
and Penman 1976; Reddy et al. 1981). In addition to
U3 snRNA-rRNA interaction by hydrogen bonding,
much U3 snRNP is bound to preribosomal RNP by
protein interactions (Epstein et al. 1984). The observa-
tions above led to the belief that U3 snRNP plays a role
in the processing removal of ITS 2 to convert 328
pre-rRNA into 285 rRNA.

How might U3 snRNP function in rRNA processing?
It has been noticed that there is extensive primary
sequence and secondary structure conservation be-
tween eukaryotic 5.85§ RNA and the 5' end of pro-
karyotic 235 rRNA (Nazar 1980; Jacq 1981; Clark and
Gerbi 1982), suggesting that the 5.88 gene has become
separated from the main body of the 28S gene by the
insertion of the ITS 2 sequence (Fig. 1). The ITS 2
resembles the introns found in mRNA genes, since the
ITS 2 is a sequence inserted into what was once prob-
ably a contiguous gene for the large rRNA. However,
unlike intron splicing, the processing of the ITS 2 tran-
script does not entail religation of the 5.85 and 28S
RNA products. Instead of being spliced together, 5.85
and 285 RNA are joined together by hydrogen bonds
(Pene et al. 1968: Weinberg and Penman 1968; Pre-
stayko et al. 1970), involving both termini of 5.8S RNA
(Pace et al. 1977; Sitz et al. 1981; Peters et al. 1982;
Walker et al. 1982; for review, see Walker and Pace
1983). The analogy between ITS 2 and introns prompt-
ed the hypothesis that U3 snRNA plays a role in the
excision of the ITS 2 transcript (Bachellerie et al. 1983;
Crouch et al. 1983; Tague and Gerbi 1984). As shown
in Figure 2, we speculated that U3 snRNA base-pairs
with a sequence found at the 5" end of ITS 2, which is
conserved in those vertebrates studied thus far (Tague
and Gerbi 1984). However, this U3-ITS 2 interaction

does not appear in nonvertebrates (Tague and Gerbi
1984).

Primary Sequence of Xenopus U3 snRNA

We used comparative sequence analysis to test the
hypothesized interaction of U3 snRNA with ITS 2. We
chose X. laevis and X. borealis as model systems be-

cause previously Furlong and Maden (1983) had com-
pared the ITS 2 sequences from these two species.
Figure 3 summarizes their results, which show that
conserved tracts are interspersed between divergent
sequences. We predicted that if any of the conserved
tracts in I'TS 2 base-pair with U3 snRNA, then both X
laevis and X, borealis U3 snRNA should have an identi-
cal sequence that is complementary to the conserved
tract of ITS 2. Alternatively, if co-evolution has oc-
curred, then compensatory base changes should be
found between a nonconserved stretch of ITS 2 se-
quence and the complementary region of U3 snRNA.

We prepared cDNA clones of U3 snRNA from both
X. laevis and X. borealis, using a synthetic oligonu-
cleotide complementary to the 3’ end of the molecule
to prime first strand synthesis. The DNA sequence of
both strands of these two cDNA clones was determined
by the method of Maxam and Gilbert (1980), and
subsequently confirmed by dideoxy primer extension
off U3 snRNA templates. The very 3’ end was deduced
from RNA sequencing of X. laevis U3 snRNA. As can
be seen in Figure 4, the primary sequence of U3
snRNA is almost identical between these two species of
Xenopus; both have a U3 snRNA sequence of 219
nucleotides with only a few positions differing between
the two. With these data we can rule out compensatory
base changes between nonconserved sequences in ITS 2
and U3 snRNA. Therefore, if U3 snRNA hydrogen
bonds to ITS 2, such an association must be with one or
more of the conserved tracts in ITS 2 (Fig. 3). When we
compared the sequence of the conserved tracts in ITS 2
to that of Xenopus U3 snRNA (Fig. 4), only tract 0 of
ITS 2 showed any appreciable complementarity to the
U3 sequence,

How widely conserved are U3 snRNA sequences?
We have aligned the U3 snRNA sequences of both
species of Xenopus with the complete U3 snRNA se-
quences now available from rat (Reddy et al. 1979;
Stroke and Weiner 1985), human (Suh et al. 1986),
Dictyostelium (Wise and Weiner 1980), and the yeast
Saccharomyces cerevisiae (Hughes et al. 1987). Re-
gions of evolutionary conservation between these
species for U3 snRNA are shown by enclosed boxes in
Figure 4. Note that the last box contains much of the
stretch of U3 snRNA hypothesized to base pair with
tract 0 of ITS 2 (Fig. 2).

internal transcribed spacer 2

5.85 | GACG-UCCAUCG
FHED L T

UUGCAAG-UAGU
, / \

3 5
U3 snBNA

pyrimidines —-GACl 28S

Figure 2. A hypothetical model for pairing vertebrate U3 snRNA to ITS 2 (Bachellerie et al. 1983; Tague and Gerbi 1984) is

depicted here for X, laevis.
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internal transcribed spacer 2

ITS 2 tracts conserved between X.laevis and X.borealis
Figure 3. ITS 2 tracts that are conserved between X, laevis and X, borealis are depicted by blackened boxes (modified from

Furlong and Maden 1983).

Secondary Structure of U3 snRNA

We used chemical modification (Inoue and Cech
1985; Lempereur et al. 1985; Moazed et al. 1986) to
determine if nucleotides within the conserved boxes of
U3 snRNA are single stranded and therefore available
tor hydrogen bonding to rRNA precursor. Nuclei were
1isolated from X. laevis livers and U3 snRNP was mod-
ified 1n situ; only those accessible nucleotides that are
not base paired will be reactive with the chemical re-
agent. Subsequently, the modified unbound U3 snRNA
was purified and used as a template for synthetic
oligonucleotide-directed primer extension (variation of

method of Qu et al. 1983). Reverse transcriptase
pauses or stops one nucleotide before the modified
residue (Hagenbuchle et al. 1978; Youvan and Hearst
1979); therefore, positions of chemical modification
can be read from a sequencing gel.

Figure 5 shows our secondary structure model for X.
laevis U3 snRNA. Base pairing is indicated by bars only
if phylogenetic comparisons yield two or more com-
pensatory base changes per stem. No nucleotides that
are susceptible to strong modification by chemicals are
located in base-paired stems of this model. The evolu-
tionarly conserved sequences in U3 snRNA indicated
by boxes in Figure 4 are depicted by wavy line brackets

U3 snRNA

Xenopus laevis

AAGACUALAC UUUCA*GAU

GAUUUGUP*UH GAJUGUACCU GGUGAAAUGU

Xenopus borealis -

U G

X.1. GCUCGAAMGU GUCUGAACUC ACAAACCACG AMAAGAGCG UCAGUGUUUU
X.b. ¥ i

X1 cuccue’ln.cacs UGAAIGUGAGG UCACAGUGCU GCUUCAUUGU GGCUGCUGUU
X.b. ' U 2

X.1. uac+waau GAACGUUCUG C-UCCCCUUU AUUAUUGGGG AGAUAGAGGG
X.b. A U G

¥ AGAGAACACA AGCUGAGUGG

Xb. (219)

Figure 4. Primary sequence of U3 snRNA from X. laevis and X. borealis; the two sequences are identical except where
differences are indicated. There seems to be population polymorphism for residue 99 in X, laevis: some frogs have a U at this
position (as indicated in the figure), and other frogs have a C (identical to the X. borealis sequence at this region). RNA
sequencing ambiguities occurred for residues A, , and U,,,. The wavy lines enclose boxes 1, 2, and 3 that are conserved in

sequence in all organisms studied so far (see text).
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UCAU
U U
C=-=G
G =y
Xenopus laevis 3 o= 8
G =Gy
U -G
U3 snRNA G=—C
A =-— 1)
C -G
A =]
g5
-C =G
G =-C
A=U _
i UGAL',
A CAA
UG e
G G U @G uuu
IJU HA E UCuU CUCCCC A-
G C L A i1l L1l ¥
E E 3 GAGA AGgGGGGuuAU
] G C—-G <
s o G C -G
U U U — A-
C 5 C -G
U A U = A
g A U=2_G
H A U=—A
U =—A
C g G —C
- U U- U - A
A G : G~-—C
G C CGUCA A
e &
Ac & A IS
U A A U
U A A G
g é GGAGC GA
A U- A = U
U G C -G
A U ' C -G _,
5" AAGACU CUGAACUCACAAA 3

Figure 5. Secondary structure model of X. laevis U3 snRNA, supported by chemical modification data and by compensatory base

changes in various organisms, Base-pairing bars are not drawn in
chemical modification data do not support their existence.

in Figure 5. There is no evidence for base pairing for
any of these three conserved boxes. Chemical modifi-
cation can be found at residues within all three con-
served boxes of U3 snRNP, Their accessibility for
chemical reaction suggests that these nucleotides in U3
snRNA could be available for base pairing with pre-
cursor TRNA.

Do any of the conserved boxes in U3 snRNA interact
with rRNA precursor? It has been proposed that a
region near box 1 of U3 snRNA might interact with the
ETS of rRNA precursor (I.L. Stroke and A.M.
Weiner, pers. comm.), that box 2 might base-pair with
a termination processing region of rRNA precursor
(Parker and Steitz 1987) and that box 3 includes much
of a region that might base-pair with ITS 2 (Fig. 2). It is
possible that U3 snRNA is used for some or all of these

for the 5'-most stem because phylogenetic comparisons and

roles. However, arguments can be raised against each
of the three proposed interactions, as will be discussed
more fully elsewhere. None of the models for base
pairing of U3 snRNA to rRNA precursor fare well
when phylogenetic comparisions are made. Proteins of
the U3 snRNP particle have already been shown to play
a major role for U3 snRNP binding in the nucleolus
(Epstein et al. 1984), and perhaps proteins are suffici-
ent for U3 snRNP binding. Alternatively, there may be
other forces needed for RNA-RNA association besides
hydrogen bond base pairing, as suggested earlier in this
chapter by the conserved sequence at the end of 165~
185 rRNA that closely associates with tRNA despite a
lack of sequence complementarity in the latter. Finally,
U3 snRNP mught play a structural role for nucleolar
organization rather than have an enzymatic function for
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cleavage events in rTRNA processing. The role of U3
snRNP in the nucleolus still awaits further investigation
for its elucidation.
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